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Abstract—Congestion management has garnered significant
attention in the Netherlands due to the sharply rising pressure on
the limited capacity of distribution networks. As an increasingly
deployed flexible asset, hybrid heat pumps can help mitigate
congestion in distribution networks. However, one key challenge
in allocating flexibility during congestion management is to
ensure user thermal comfort. In this context, this work proposes
the incorporation of quantified thermal comfort into the modeling
of congestion management using hybrid heat pumps. The grid
topology model is constructed based on a field-collected low-
voltage distribution network in the Netherlands, where end-
user thermal comfort is quantified based on a real dataset,
and integrated into the optimization objective of the congestion
management model. The methodology is tested on a practical
case study in the Netherlands, where flexibility allocation under
different power limitation levels is analyzed. The results demon-
strate how flexibility allocation and pricing change under varying
congestion management requirements and their impact on user
thermal comfort.

Index Terms—Congestion management, Flexibility, Hybrid
heat pump, Thermal comfort, Distribution network

I. INTRODUCTION

With the rapid expansion in distributed renewable energy,
grid congestion has emerged as a significant challenge in
distribution networks, particularly in the Netherlands [1].
Therefore, congestion management has attracted considerable
attention [2]. At the same time, system operators are
investigating strategies to ensure the availability of more
flexible capacity in congested grids, by for example mandating
flexibility provision from large consumers [3].

The Dutch residential sector is seeing rapid growth in
hybrid heat pump (HHP) adoption [4], with their inherent
gas-electricity flexibility making them a scalable flexibility
resource to alleviate peak load in low-voltage grids. The
current literature has demonstrated the effective performance
of HHPs in providing flexibility when needed [5]. In
the practical control of HHPs for flexibility provisioning,
researchers have taken into consideration numerous factors,
such as energy cost [6], carbon reduction [7], and user comfort
[8]. Among these factors, thermal comfort has garnered the
most attention, although it remains challenging to quantify [9].

Consequently, researchers have proposed various
approaches to address the quantification challenges [10].
Usually, hierarchy and dynamism metrics would be proposed
to evaluate occupants’ feeling [11] which are too complex
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to apply in practical cases. With the objective to reduce the
complexity, [12] measured thermal comfort using interior
temperature which can not directly capture human perception.
To address this limitation, some scholars have introduced
the Predicted Mean Vote (PMV) index [13], albeit primarily
at the assessment stage rather than during optimization and
control [14] due to its complex formulation. Xu et al. [15]
investigated methods to simplify the PMV and incorporate
it into an optimization framework. However, their approach
only employs a simplified linear function for thermal comfort
with theoretically derived parameters. Overall, methods
for quantifying thermal comfort are neither aligned with
real-world scenarios nor can they be readily integrated into
the congestion management optimization framework.

To address the research gap mentioned above, this work
quantifies thermal comfort using parameters validated through
pilot implementations and proposes a thermal comfort-based
congestion management method within a real-world project.
In addition to the inclusion of energy costs in congestion
management [16], this study also accounts for costs associated
with participant comfort, describing the price acceptance
rate of potential consumers. Specifically, it first introduces a
real-life operational data-driven thermal comfort model. Next,
both energy and thermal comfort costs are integrated into the
optimization framework of congestion management. Finally, it
provides a detailed discussion of various flexibility allocation
strategies, their corresponding flexibility prices, and the
thermal comfort of the participants during flexibility provision.

This research is conducted as part of the DACS-HW
project [17], which investigates how HHPs can participate
in congestion management. DACS-HW facilitates collection
of operational data of HHPs, electrical consumption data
of participant smart meters and low-voltage distribution grid
transformer data, such as phase voltages and currents.

The remainder of the paper is organized into four sections.
Section II explains the developed methodology. Section III
presents the case study’s setup, which describes the input
data characteristics and discusses the obtained results, while
Section IV concludes the paper.

II. PROPOSED METHODOLOGY

As shown in Fig. 1, the proposed methodology can be
described in five stages: i) low-voltage distribution network
modeling using real network data, ii) HHP and thermal dy-
namic modeling, thereby enabling the modeling of the entire
grid operation, iii) thermal comfort quantification, lineariza-
tion, incorporation in the objective function, iv) simulation of



TABLE I
NOMENCLATURE

Sets
B Buses i ∈ B in the network, i = 0 is the slack bus.
H ⊆ B Subset of buses connected to a user.
HH ⊆ H Subset of user buses that have a HHP.
L Set of lines i → j in the network with (i, j) ∈ L.
T Set of discrete time periods with interval ∆t.

Parameters
∆t Time interval [hours].
λp
t Electricity price [e/kWh].

λg
t Natural gas price [e/m3].

λcomf Thermal comfort price [e/%].
ηg , Hg Efficiency of boiler, heating value of gas: 9.77 [kWh/m3]
Smax
0 Maximum transformer apparent power [kVA].

V , V Voltage magnitude safety constraints [V].
pbasei , qbasei Fixed real and reactive base load at bus i [kW, kVAr].

Variables
si = sgi − sdi Net apparent power injection at bus i.
pi = pgi − pdi Net real power injection at bus i.
qi = qgi − qdi Net reactive power injection at bus i.
Sij , Qij , Pij Apparent, reactive, real power sent from bus i to bus j.
vi Squared voltage magnitude |Vi|2 at bus i.
lij Squared current magnitude |Iij |2 from bus i to j [A2].
gi,t Gas consumed at bus i time t [m3].
pHP
i Heat pump electrical power consumption at bus i [kW].

ηCOP Coefficient of Performance (COP) of heat pump in HHP.
T i, Th, Ta Interior, emission, house envelope temperature [◦C].
ΦCV

i,t ,Φ
HP
i,t,Φ

h
i,t Boiler, heat pump, combined thermal power in [kW].

zHP
i,t, z

CV
i,t Whether to supply heat with heat pump or boiler.

pimp
t Imported electrical power [kW].

the baseline case based the historical data and proposed model,
v) congestion management results based on different power
limitation levels. The notation used in this paper is defined in
Table I.

A. Distribution Network Model

To model the non-convex and nonlinear Optimal Power
Flow (OPF) in the low-voltage distribution network, the
Second-Order Cone Programming (SOCP) approach is em-
ployed to relax the problem, while also accounting for grid
losses to improve the accuracy of the results [18].

The electrical grid model is defined by imposing feasibility
constraints on the power flows and currents between buses,
and the voltages at bus terminals. The equations summarized
below are adopted from the conic relaxation of the branch flow

Fig. 1. Overview of the Proposed Method

model [19].
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The following operational constraints are imposed on the
control variables:

P 2
0 +Q2

0 ≤ (Smax
0 )2

ℓij ≤ ℓij ∀(i, j) ∈ L
V ≤ vi ≤ V ∀i ∈ B

(2a)

(2b)

(2c)

Furthermore, we assume no generators are present at any
of the user buses and all power supplied to the network S0 is
transferred through the slack bus, which is connected to the
grid transformer. This results in the following simplified load
conditions:

pi = 0 ∀i ∈ B \ {H, {0}}
pi = −pbasei ∀i ∈ H \ HH

pi = −pbasei − pHP
i ∀i ∈ HH

qi = −qbasei − qHP
i ∀i ∈ HH

qHP
i = tan(arccos(PF)) · pHP

i ∀i ∈ HH

(3a)

(3b)

(3c)

(3d)

(3e)

Based on real operational performance, under continuous
load conditions heat pumps typically behaves as an inductive
load with a power factor of PF ≈ 0.9 , this relationship is
modelled by (3e).



B. Hybrid Heat Pump Model

The HHP of each household is driven by the thermal
dynamics described by the discrete state-space model (4a),
of which the state-space matrices have been identified from
DACS-HW field data [17]. A more detailed description of the
thermal model deployed here and a theoretical background can
be found in [20]. Constraint (4b) sets the initial condition for
the temperature state trajectory.

Ti,t+1 = ATi,t +Bui,t ∀t ∈ T ,∀i ∈ HH

Ti,1 = Tinit ∀i ∈ HH

(4a)

(4b)

The supply water temperature and emission system temper-
ature Th are closely related quantities and assumed here to
be approximately equal. The COP model ηCOP is a nonlinear
function of the temperature lift Th − Ta, preventing it from
being directly used in a linear optimization model. The com-
mon and most simple approach to deal with the nonlinearity
is fixing Th to an operating point Th = T0

h [21–23]. This
operating point can be derived from operational data, but
depends significantly on various environmental factors such
as the installation quality, the type of emission system, and
the heat demand required.

The regression coefficients of ηCOP were found through
linear regression by fitting on the DACS-HW dataset [17]. The
electrical consumption of a HHP, PHP, is determined by the
COP, and hence also depends on Th. This makes the choice of
Th

0 a critical parameter in the simulation, and ideally a range
of supply temperatures should be simulated to understand the
consequences of supply temperature on electrical grid loading.
The COP model is defined by the following equations:

ηCOP(∆T) = 20.3795− 3.2103 log2(1 + ∆T)

Th
i,t − Ta

t = ∆Ti,t ∀t ∈ T ,∀i ∈ HH

ΦHP
i,t = ηCOP(∆Ti,t) · PHP

max ∀t ∈ T ,∀i ∈ HH

(5a)

(5b)

(5c)

The inputs of the HHPs are limited to the feasible set given by
constraints (6a) - (6e), which is derived from real operational
data.

zCV
i,t ΦCV

min ≤ ΦCV
i,t ≤ zCV

i,t ΦCV
max ∀t ∈ T ,∀i ∈ HH

zHP
i,t Φ

HP
min ≤ ΦHP

i,t ≤ zHP
i,t Φ

HP
max ∀t ∈ T ,∀i ∈ HH

0 ≤ PHP
i,t ≤ PHP

max ∀t ∈ T ,∀i ∈ HH

ΦCV
i,t +ΦHP

i,t = Φh
i,t ∀t ∈ T ,∀i ∈ HH

(1/∆t) · gi,tηgHg = ΦCV
i,t ∀t ∈ T ,∀i ∈ HH

(6a)

(6b)

(6c)

(6d)

(6e)

Finally, the total energy cost of a single HHP across the
optimization horizon can be computed as:

Jc
i,t = λe

t · PHP
i,t ·∆t+ λg · gt ∀t ∈ T ,∀i ∈ HH

(1/∆t) · gi,tηgHg = ΦCV
i,t ∀t ∈ T ,∀i ∈ HH

(7a)

(7b)

C. Thermal Comfort Quantification

The Predicted Mean Vote (PMV) and the Predicted Percent-
age of Dissatisfied (PPD) are widely used to assess thermal
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Fig. 2. Distribution of PPD for Ti ∈ [15, 30] ◦C as derived from kernel
density estimation.

comfort performance [15]. The PMV is derived by expanding
the comfort equation based on the seven-point ASHRAE ther-
mal sensation scale, which ranges from −3 (cold) to +3 (hot),
with intermediate values representing varying levels of thermal
comfort: −2 (cool), −1 (slightly cool), 0 (neutral), +1 (slightly
warm), and +2 (warm). PPD tells how many people may feel
uncomfortable. If PPD is high, many people are too hot or too
cold. A low PPD means most people feel comfortable.

It is important to note that the PMV and PPD equation is
quite complex, and its detailed formulation can be found in the
relevant literature [24]. Therefore, we did not calculate PMV
directly. Instead, we utilized data from the ASHRAE Global
Database II [25], which includes information on factors such
as clothing insulation, metabolic rate, and other relevant
variables. We selected over ten thousand measurements
collected from temperate regions of Europe. Kernel Density
Estimation (KDE) was employed to estimate the probability
density function (PDF) of the radiant temperature, air
velocity, relative humidity, clothing insulation, and metabolic
rate. For a combination of factors, the PPD was calculated
using the Python package pythermalcomfort [26]. Through
repeated random sampling, ranges of PPD for a given indoor
temperature were calculated, as shown in Fig. 2.

After that, we proceed with the linearization of PPD for
integration into the overall optimization objective. Since the
set of PPD points within the given interior temperature range
Ti ∈ [15, 30] ◦C is approximately quadratic and hence convex
we can use an outer approximation to find an equivalent linear
formulation. The outer approximation can be defined as:

PPDi,t ≥ f(Ti,t, µm, µm+1) ∀t ∈ T ,∀i ∈ HHP,∀m ∈ M
(8)

Where f(Ti
i,t, µm, µm+1) is the line f(Ti

i,t) passing through
the two median points {µm, µm+1} ⊂ M with M the
set of median PPD points described by Fig. 2. The outer
approximation is visualized in Fig. 3.

D. Congestion Management Model

For the entire model, the optimization objective combines
the total energy cost and the comfort cost. By integrating
the network model, thermal dynamics model, and HHPs, we
propose the complete optimization model, as shown in (9).
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Fig. 3. Outer approximation of the PPD objective.

min
∑
T

λp
t∆t(

∑
H

pi,t +
∑

(i,j)∈L

ri,j li,j) +
∑
T

λg
t gi,t

+
∑
T

λcomf · PPDi,t︸ ︷︷ ︸
Comfort Cost

s.t. Network model: (Eqs. (1)-(3))
Thermal dynamics: (Eq. (4))
HHP model: (Eqs. (5)-(7))

(9)

To optimize congestion management, a baseline case is first
established based on the historical data from the project with-
out implementing any specific congestion measures. This base-
line result pbaselinet serves as a reference for comparing and
quantifying the impact of the measures applied subsequently.
We regulate the imported power to follow the power reduction
request pflext specified for the selected time period Tcongestion.
The total imported power should obey the set power limit
during congestion management as enforced by (10).

pimp
t ≤ pbaselinet − pflext ∀t ∈ Tcongestion (10)

III. CASE STUDY

A. Case Description

This study selects a section of a real low-voltage distribution
network in the Netherlands. The network data are extracted
from the network information file, as illustrated in Fig. 4.
The system comprises 87 nodes, including 37 residential load
nodes, 12 of which are equipped with HHPs. The thermal
properties of the houses and the operational parameters of the
HHPs are assumed to be identical for all customers. For the
thermal comfort price, we keep the λcomf constant and equal
to 0.27 e/% [15]. We collected energy consumption data from
real users on one day (February 1, 2024) as the test case. After
simulating the power flow operation based on the real case, we
presented the voltage deviation of each node in Fig. 4. Since
this case only considers the consumers’ load, the voltage at
the nodes is always lower than that of the slack bus. Some

Fig. 4. Low-voltage distribution network topology: Node voltage deviation
from the slack.

of the voltage deviations came close to 0.1 p.u., which is the
maximum allowable deviation set in this low-voltage system.

For this study, we focus on the selected day during the peak
hours from 17:00 to 19:00, when congestion management
is required by the DSO. To analyze the impact of power
limitations, we evaluate three power limitation scenarios: 4
kW, 8 kW, and 12 kW.

B. Result and Analysis

The costs associated with different congestion management
cases are analyzed in Table II. The flexibility price is defined
as the total additional cost divided by the flexibility provided.
As the power limitation increases, the flexibility price remains
approximately 0.3 e/kWh, but the marginal increase in
provided flexibility gradually declines.

Specifically, in the 4 kW limit case, the additional comfort
cost is almost twice the total additional cost, which indicates
that the system consumes less energy and tolerates a higher
comfort cost. Whereas with a higher limit, addition comfort
cost increases less, but total additional cost increases more,
which finally makes two costs almost the same in the 12kW
case. This indicates that the system consumes more energy
to maintain an acceptable level of comfort with higher power
limitation.

The total power in four different limit scenarios is shown
in Fig. 5, where the basic load represents the consumers’ load
without the HHP, obtained from historical data. During the
period from 17:00 to 19:00 (the gray area in the figure), the
aggregated peak power is regulated to comply with the power
limit requirements. By utilizing the flexibility of the HHPs,
the system changes the HP load to reduce the total load.
Meanwhile, before the congestion period, the HPs operate
at higher output levels, and then their load decreases sharply
during the power limitation period.

For detailed user information, Fig. 6 illustrates the indoor
temperatures of all 37 residents across different power limit



TABLE II
ANALYSIS OF DIFFERENT POWER LIMITATIONS

4 kW 8 kW 12 kW
Total Additional Cost (e) 1.73 2.81 4.34
Additional Comfort Cost (e) 3.41 3.87 4.91
Flexibility Provided (kWh) 6.77 10.34 12.43
Flexibility Price (e/kWh) 0.26 0.27 0.35

Fig. 5. Load in base case and different power limit cases with the regulated
period in the gray.

cases. The actual outdoor temperature is measured by the
smart meters within DACS. As figure shows, the outdoor tem-
perature is lower during the congestion period than in the after-
noon, so the indoor temperature is more likely to decrease, as
modeled in Eq. 4a. To address this issue, indoor temperatures
are preheated for different users before the congestion period.

Notably, temperatures in the base case would not exceed
23◦C, which represents the optimal comfort point as shown
in Fig. 2, whereas in power limitation cases, the temperature
for some users would exceed 23◦C. For this, Fig. 7 provides
the information about the PPD of all users in each case.
During the power limitation period, the PPD of users with a
temperature higher than 23◦C tends to remain stable.

During the whole congestion management process, different
users exhibit distinct temperatures, with varied HP usage
allocations during flexibility provision, as shown in Fig. 8.
Although most parameters are set consistently, differences in
inherent load profiles and network topology lead to variations
in power and voltage constraints. As a result, users require
different HP allocations to achieve optimal results of both
energy consumption and comfort levels.

Fig. 6. Indoor temperature and outdoor temperature in different scenarios
with the regulated period in the gray.

Fig. 7. PPD of all users in base case and different power limit cases with
the regulated period in the gray.

IV. CONCLUSION

This paper presents a quantified thermal comfort model in
congestion management to allocate flexibility among HHPs
during power limitation periods. By including thermal comfort
in the optimization objective, the user comfort cost during con-
gestion management is optimized together with energy cost.
Under different levels of power limitation, the corresponding
flexibility allocation and thermal comfort among users vary
even when the same technical parameters are applied. This
variation may lead to potential fairness issues among users in
real congestion management scenarios. Our study also shows
that different power limits can result in varying flexibility
prices. However, the price simulated here is based on the
comfort price we set, which could be further investigated based



Fig. 8. HP usage of different HHP users.

on real users’ preferences.
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